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An automatic continuation algotithm Tor the solution of dinear
singular parturbation problems is developed and incorporated into
two codes which implement global methods for solving two-point
boundary value problems. Specifically, the algorithm will be based
upon error estimates formulated in the collocation code COLSYS
and the deferred correction code HAGRON. The benefits of using
continuation are clearly demonstrated for both codes for a large
class of problems. © 1985 Academic Press, Inc.

L. INTRODUCTION
Singular perturbations of the form

gu ={f(x,u), a<x=hHh, gua),ub)=20 (1)
arise in many practical applications. For example, in | 3| applica-
tions are given from the fields of seismology, semiconductor
theory, fluid dynamics, and the theory of shells of revolution,
and many more examples occur in the literature. There is,
therefore, a real need to be able to solve such problems effi-
ciently, although they often present a formidable chalienge to
existing numerical methods, For example, the presence of the
parameter £ in problems of the form (1) ofien canses the prob-
lem to become increasingly stifT or, in the nonlinear case. have
asolition that requives a very pood initial guess in order lor the
Newlon Heration to converge. In such cases itis very diflicult to
approximate the solution of (1) direetly. Problems of this natuge
usually require initial knowledge of the solution and mesh in
order to solve them. Such knowledge can be acquired by solving
a chain of problems in which the parameter varies and this
process is called continuation (see, e.g., [3]).

Essentially, there are two types of continuation; the first of
these is implemented when solving nonlinear problems which
have multiple solutions for certain values of the continuation
parameter. With such problems, the aim is to proceed carefully
through the parameter range in order to identify all solution
branches, turning points, and bifurcation points while mini-
mising the number of Newton iterations by supplying a good
initial guess to the solution at each step. This type of continua-
tion is not considered here, as we shall only be concerned with

linear problems. The second type of continuation is the so-
called homotopy continuation in which the aim is 10 solve one
very difficult problem by first solving a chain of casier prob-
lems, Here, the mesh and solution (il notlincar) are passed on
from problem to problem until the last (difficult) problem is
reached with a suitable initial approximation to the solution
and a suitable mnitial mesh. With this second type of continuation
it is preferable to solve as few intermediate problems as possi-
ble, while minimising the number of Newton iterations and
mesh adaptations at each step.

Since we shall be solving only linear problems, the prime
consideration in the homotopic continuation process will be to
ensure that for each problem a suitable initial mesh is provided
s0 that little, or no, mesh adaptation has to be performed at
each continuation step. The main aim is then to take as large
a step in the continuation parameter as possible while ensuring
that this consideration is satisfied. For example, consider the
general linear singular perturbation problem,

m—i

eu™ = 2 clxyu + g(x), a=x=b (2)

i=0

As £ becomes increasingly smaller for this problem, the solution
generatly becomes increasingly harder to approximate directly.
Indeed, Tor very small values of the parameter g, direct approxi-
mation of probleim (2) may not be possible, hence the need for
continuation. For the above problem (2) a schematic continua-
tion algorithin might take the following forny:

SCHEMATIC CONTINUATION ALGORITHM.

1. Select an initial problem gy, a desired final problem g
and an error tolerance tol.

2. Initially solve problem &, on a mesh m,. Set j = 0.

3. REPEAT

3.1.  Select g, such that we believe 7; 1o be a “*good”’
initial mesh for this problem.
3.2, TInstall m; as initial mesh for problem g;,,.

3.3. Ultimately solve problem g;,, on the final mesh
;5. where 7., is obtained from m; by using the
automatic mesh refinement algerithm of the under-
lying boundary value problem solver.
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CONTINUATION FOR SINGULAR PERTURBATION

34 j=j+1
UNTIL {g; = &}.

The above algorithm will, essentially, form the basis of the
continuation strategy to be explained in this paper. Clearly,
several points need to be expanded upon in order 1o have a
clear understanding of how the algorithm will work. At this
stage we develop our approach in a general way in order to
elucidate the aim of our strategy, leaving the precise details
for later sections.

The first point to note in the above algorithm is that the
selection of g, is not automatic; rather, it is supplied by the
user. We note that it would be desirable to develop an efficient
strategy in which the user need only supply the value of s,
although this has so far proved elusive. In practice g, is usually
chosen in the range [0.1, 1} in order to give an initial problem
that is only mildly stiff. Having selected &, and possibly sup-
plied a uniform initia! mesh, the boundary value problem code
is then used to construct a solution for problem g, which satisfies
or approximately satisfies the tolerance. It is not considered
vital that the solutions to the intermediate problems satisfy the
tolerance exactly since, in the case of a homotopic strategy, it
is only the solution to the final problem that is of interest.

It is important to clarify what is meant by specifying that m;
should be a ““good’” initial mesh for the problem &;,,. For the
purpose of our algorithm a “*good’’ initial mesh m; shall be one
that has the following two properties:

(i} at most one adaptation of the mesh 7; will be needed
in forming a mesh #,,, on which problem &;., is appro-
priately resolved

the mesh formed from adapting m; once shall be **close
to optimal” in the sense that it shall not have many
more mesh points than are actually required.

(ii)

It will also be important to explain how we select g, such
that we believe the mesh 7, will be a **good’” initial mesh for
this problem. In order to appreciate how parameter selection
is performed in our strategy we will need to understand how
the functions which control mesh selection in the two codes
vary along the chain of selected problems. In particular, we
will be aiming to develop a strategy which monitors and predicts
the maximum values of these functions from problem to
problem. _

In the next section we explain the mesh selection or *‘moni-
tor’” functions used in both the collocation code COLSYS
[1, 2] and the deferred correction code HAGRON [6-8]. In
addition, we consider how these monitor functions are utilised
in the mesh selection process. In Section 3 we discuss the
choice of an appropriate formulation for the continuation pa-
rameter and give some notational details, while in Section 4
the full detaiis of our continuation strategy are revealed. In
Section 5 we list our test set and display the results for both
codes with and without use of continuation. In Section 6 we
draw conclusions and suggest further work of interest in this
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area. An important point to note about our strategy is that we
are ultimately interested in continuation for nonlinear problems
and we develop our approach with this in mind.

2. MESH SELECTION

In this section we explain the monitor functions used in the
mesh selection algorithms of COLSYS and HAGRON. The
behaviour of these functions from problem to problem will
prove central 10 our continuation strategy. We do not provide
the full details of how mesh selection is performed for both
codes here; however, a full discussion of monitor functions and
mesh selection can be found in [3].

2.1. COLSYS Monitor Function

COLSYS is a package of subroutines developed in 1980 by
Ascher et al. [1] for solving mixed-order systems of ODEs
subject to separated, multipoint boundary conditions. The
method used to approximate the solution is collocation at
Gaussian points.

It has been demonstrated [11] that the mesh selection algo-
rithm of COLSYS exhibits certain “‘instabilities’” when at-
tempting to solve extremely stiff problems in a continuation
framework. In a recent paper [11] the present authors developed
certain modifications for eradicating these instabilities, a pro-
cess which resulted in 2 modified version of the code, entitled
COLMOD. Throughout this paper we shall use COLMOD in-
stead of COLSYS whenever we are working in a continua-
tion framework.

A useful feature of COLSYS is that it is possible to impose
different error tolerances on different components of the collo-
cation solution v(x). For example, let us suppose that (2) has
been converted to first-order form and solved for a certain value
of € on a mesh 7

Wia=X <X <-<Xy<Xy+ Zb,

h=maxh,.

I=i=y

B = Xy — X,

Given a set of arel tolerances rof; and pointers to which solution
components ¢; they apply, the code attempts to satisfy the
following conditions

lli, = veli = 0t +flolly, (=1, Nj=1, .. mo0l, (3)

where we define

a i=1,.,N. (4
<‘xl+]

Upy = Um”i = max |um(x) - Um(x)l':
X =x

The objective of the COLSYS mesh selection algorithm is to

form a mesh * that yields a collocation solution which satisfies

the above conditions (3). In order to show how this objective
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is achieved we consider the first term of the global error of
the collocation solution v(x). This can be shown to have the
localised form

u(x) - v(x) = Cu(1+l)(x)hf+l, x e [Xh xi'H]s l = la weey Ns (5)
where C is a computable constant and [ is the number of
collocation points per subinterval. An O(h) piecewise constant

approximation s(x) to u’*V(x) can be formed from the computed
solution v(x), thus leaving us with an a posteriori error estimate

Cs(x)h£+l == Cu(l+l)(x)h§+1$ xE [xi‘) xi-H]a i = I-a sy N- (6)

One the error estimate in (6) has been formed, the aim is then
to establish whether the following conditions hold:

Clsealt® = tof(1 +llocl), i=1,..Nj=1,...nr0l.
(7

In order toe motivate the choice of COLSYS monitor function,
let us suppose that on some subinterval &, the above condition
(7) does not hold for solution compoenent v, . In this situation
extra mesh points would be added to subinterval &; when form-
ing a new mesh. The number of mesh points that would need
to be added is determined by calculating the subinterval size
k¥ that would make (7) an equality, that is,

. [mlf(l + ||uq[|1)}uu+n
I PR

Cls., () ®

Therefore, the number of points that need to be added to the
old subinterval i; when forming a new mesh is calculated in
the following manner

C[St_,(-xl)l

h [ :Im’tﬂ)
A=p|— . 9
pe Lokl + Ju, |l ©)

It is this calculation that is essentially used when performing
mesh selection in COLSYS. In general, however, the COLSYS
monitor function is a piecewise constant function of the follow-
ing form:

C lscj(x,-)l ]mwn
tol(1 + llu, 1) '

,N.

o) = max [

(10)

x € [xf!xi+]]! i= la e

Tt is the behaviour of the function ¢(x) from problemn to problem
that will prove to be central to our continuation strategy.

We finish our discussion of the COLSYS monitor function
by noting that a new mesh 7 * is formed in COLSYS by consid-
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ering the equidistribution of the function (10) over each of the
subintervals of 7*, that is,

' d(x)dx = A%f" dx)dx, 1<i=N* (1)

The number of mesh points N* in the new mesh #* is deter-
mined by the calculation

N
N* = ¢(x)h,.

i=1

(12)

2.2. HAGRON Monitor Function

HAGRON is a package of subroutines developed by Cash and
Wright [6—8] for solving first-order systems of ODEs subject to
separated, two-point boundary conditions. The method used to
approximate the solution is based on symmetric Runge—Kutta
formulae with deferred corrections.

In order to describe the monitor function used for mesh
selection in HAGRON, we briefly describe how this code calcu-
lates its numerical solution. For a given problem, HAGRON
computes a first solution n using a fourth-order Runge-Kutta
formula & so that

&(m) =0, (13)
where 7 is a fourth-order solution vector on the given mesh.
The fourth-order solution is then substituted into a higher order
formula to construct an appropriate deferred correction. A
higher order solution % is then computed from

&(m) = —&(n), (14)
where & is a sixth-order Runge—Kutta formula. Once again a
higher order deferred correction can be formed and thus an
eighth-order solution % is computed from

&M = — &) — &7 (15)

The final deferred correction &(7) is the value that HAGRON
uses in its monitor function for adapting the mesh. This sixth-
order correction is a piecewise constant over each subinterval
of the mesh and can be shown to be an Q(%) approximatien to
an expression of the form

LM =fH, xEMx,xali=1,...N, (16)
where f(x) is a continuous function appearing in the exact form
of the error in the sixth-order solution. We take &,(7) to mean
the value of the deferred correction on the ith mesh subinterval,
Thus, a piecewise constant O(h) approximation to f(x) is eas-
ily calculated
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i

S(x) = xE [xi> x.iH]: = 19 vera N. (17)

As with COLSYS we now have an a posterioti error estimate,
and we aim to establish whether the conditions

is. )| =< tol = max(L, |95), i=1,...N,j=1,..,ntol,
(18)

hold, where 7y is the value of the ¢;th component of the solution
at the ith mesh point. The choice of a monitor function in
HAGRON is therefore motivated in a fashion similar to that
of COLSYS; in short, if is a piecewise constant function of
the form

d(x) = max
1=j=ntol

[ fse ()]

16
YT TN » XE i!xl' »
tol; * max(l, l'fﬁfh] Lxi %)

(19

i=1.,N.

As with COLSYS, it is the behaviour of this function along
the chain of continuation problems that will be central to our
continuation strategy.

The main difference between the COLSYS and HAGRON
mesh selection strategies arises due to the manner in which
their respective monitor functions are used to calculate a new
mesh. Essentially, COLSYS adapts the mesh in a dynamic way
and attempts to equidistribute its monitor function, as in (11).
HAGRON, however, utilises its monitor function in a static
way, in the sense that it tends to either remove a particular
mesh point or to keep it in the mesh rather than to move it to
a different location. The mesh selection algorithm in HAGRON
adds extra mesh points to a particular subinterval whenever
d(x)h > 1, It adds the new points at equal subintervals of
the old subinterval, and the number of points to-be added is
determined by the value of ¢d(x),.

3. PARAMETER SELECTION AND NOTATION

In this section we give some notational details that will be
used throughout this paper. Additionally, we discuss the method
that we use for parameter selection in our continuation strategy.
At this stage, we do not motivate the basis for our particular
selection strategy, instead we delay a discussion of this matter
uatil the next section.

3.1, Notation

In the Introduction we noted that our continuation strategy
would involve the solution of a sequence of problems in which
the continnation parameter gradually becomes smaller. That is,
given an initial problem &, and a final problem &;, we solve a
sequence of problems in which the parameter varies as
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80>E]>81>"'>8}>"‘>€‘r. (20)
For each of these problems we denote m;, as the kth mesh
formed in solving problem g;, and on any mesh w;, with N

points we define

Dy = max &(x), Hp={h: dlx) =D},

N, 21
Py =2, plxdh:.

=l

P;, may be considered as a prediction of the number of points
that will be required in the (k¢ + 1)th mesh for problem g;.

Finally, if we consider the exact counterparts of the monitor
functions (10) and (19), then we may define ®;, as the best
available approximation to the exact monitor function for prob-
lem g;. By *‘exact counterpart’” we mean the functions that
result from replacing the approximation s(x) in (10) with
u®V(x) and the approximation s(x) in (19) with f{x), We will
expand upon how @, is determined in Section 4.

3.2. Parameter Selection by Extrapolation

In the previous section we noted that our continuation strat-
egy would be based upon the behaviour of the moniior functions
{10) and (19) along the chain of continuation problems (20).
To be more specific, the strategy relies upon monitoring and
predicting the maximum value of these functions from problem
to problem. At each continuation step, our aim will be to predict,
by reference to information assembled from previous continua-
tion steps, the value of the continuation parameter that we
believe will correspond with the maximuom value of the monitor
function taking a desired value.

Let us suppose that we have solved problems g;_, and &
and that we now want to select the parameter g;,, such that
D10 = Dy, where ;4,4 is the desired value of @, (we
detail how &, ;is chosen in Section 4). It is possible to linearly
extrapolate to find the appropriate value of g, as

£ — E;_
£ = g ((Djﬂ@ - ¢)j41,1) [W} . (22)

Alternatively, if problem ¢;., has also been solved it would
be possible to quadratically extrapolate. In general, quadratic
extrapolation is the highest order extrapolation that we use in
our strategy.

Naturally, the accuracy of both linear and guadratic extrapo-
lation will depend greatly upon the smoothness properties of
the functions that we are trying to extrapolate, It is with this
in mind that we consider the following example.

Exampie 1. Consider a singular perturbation problem with
a boundary layer at the right end of the interval
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e —u' =0, (=1, w(H)=0. (23)
The exact solution for this problem is
1 - x—1)/e
u(x) = —— (24)

- e*lia )

In order to demonstrate the potential hazards of the extrapola-
tion strategy {22), let us consider the exact counterpart of the
COLSYS monitor function (10) for this problem for the case
[ =4, niol = 1, and ¢, = 1. The exact version of the monitor
function is

Ce(.rﬁ])IE 15
(1 —~ e " Yoli(1 + lux)hy | -

Px) = [ (25)

We are interested in the behaviour of the maximum value of
this function as ¢ varies. For this problem the maximum value
of (25) occurs at x =1 for all values of &. We denote this
maximum valae for each & by ®(g), and after grouping con-
stants, we find its value to be of the form
$(e) = Ble + O(e™'"?), {26)
where B is a constant. The derivatives with respect to & of the
function (26) are particularly large for small &, which makes
it unsuitable for linear or guadratic extrapolation. However, if
we simply consider expressing (26) in terms of
E=1/e 27
then we form a function which is altogether more easy to deal
with, namely
d(E)Y= BE + O(e™F) (28)
and, clearly, since this is essentially a linear function, linear
extrapolation should work very well here.

This example indicates what we have generally found to be
true with singular perturbation problems, namely, that greater
accuracy is achieved in our parameter selection sirategy if we
consider extrapolation of the function ®(E) instead of $(e),
where £ = 1/e.

As a footnote to this section, we outline the method for
parameter selection when only the first problem & has been
solved. For this special case, we simply assume that @(E) is a
linear function of E with gradient m. Thus we can predict m
from

q)g‘, = I’nEo (29)

and hence we select E, (and consequently £,) as
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E = ®/m, 30

where @, 4 is the desired value of @,

4. OVERALL CONTINUATION STRATEGY

In this section we aim to draw together and expand upon
the details of the first three sections in order to establish our
overall continuation strategy.

4.1. Derivation of Best Approximation ¢,

In the previous section we defined the variable @,, to be the
best available approximation to the maximum value of the exact
monitor function for problem &;, We now concern ourselves
with how this variable is derived at each continuation step,

Let us suppose that we have solved problem &; on an initial
mesh 7;, and established the variables defined in (21). The
initial mesh 7;, at each continuation step does not normatly
yield a numerical solution that appropriately satisfies the error
tolerances, therefore, a second mesh 77,; is usually formed on
which a new numerical solution is calculated, along with the
variables in (21). We note at this stage, that one of the aims
of our continuation strategy is to select g such that only one
adaptation of the initial mesh #;; will be needed in forming a
mesh on which the problem & is appropriately resolved. In
general then, the mesh ;; will be the final mesh required for
problem &;.

In Section 2, we noted that the monitor functions (10) and
(19) contain first-order approximations, denoted by s(x), to
certain functions that appear in the first term of the error for
both methods. We now consider the concept of an exact monitor
function, which we shall denote by é{x}, and which is formed
by replacing the approximations s(x) in (10) and {(19) with their
exact counterparts. Thus in general, for either of the monitor
functions {10) and (19), we have

H(x) = dix) + cg(x)h; + hout., N,

(31}

2E [ xli=1, ..

where ¢ is a constant and g(x) denotes a general function found
in the first term of the error that results from approximating
¢(x) by either (10) or (19). Now, if we denote by ¢, (x) the
function ¢,(x) for problem g; and consider the variables (21)
on the meshes 7, and 7, we have

®, =®, +H,
il i Bl (32)
(p;xz = (Dj,.! +¢H;;,

where

O, = max dilx), T=cglxn), xn={x:d) =D}
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An important point to note about the equations (32} is that
while the vanables ®;, and H,; are calculated in the manner
given in (21), the variables @;, and H;, are calculated as

(I)j,l = max 05,'.1(1)’ Hj‘} =1{h: dlxy = (Dj,l}y (33)
LX) Ko}
where
Hja =X,— X, qu,z(x) = (I’_;,a Vx € (X, X5

We note that, in most cases, the evaluation of &;, and H,; by
means of (33) will be equivalent to their evaluation by (21).
Now, since the two equations {32) contain only two unknowns,
it is possible to calculate ®,, which we deem to be the most
accurate available approximation to the maximurm value of the
exact monitor function for problem ;.

In general, the calculation of @, reties upon forming the two
equations (32), However, it occasionally arises that the initial
mesh ) is apt for the appropriate solution of a given continua-
tion problem g;, in which case, only the first of the two equations
(32) is available. In this case, we simply choose &, = &;,.
4.2. Choice of Desired Maximum Monitor Function

Value ¢’j+l.d

In Section 1 we discussed the properties that constituted a
“‘good’” initial mesh, we now formalise these properties in
order to gain an understanding of how D, , is selected at each
continuation step. Let us suppose that we have solved problem
& on inittal mesh m; and final mesh m;,, we desire that the
following two properties hold:

(i} d)j.ll—]j.z = 2!
(34)
Gi) P,y = 15+%P,.

It is worth noting that these properties are not only required
for the intermediate continuation problems, but also for the
final problem &, However, for the final problem, it is usually
the case that more than two meshes are formed in order to
satisfy the tolerances exactly. In particular, if the mesh 7, does
not yield a solution which satisfies the tolerances we mesh
select once more to form a third mesh 75 and, if this mesh
does not yield an appropriate solution then the mesh is repeat-
edly doubled until either the tolerances are satisfied or there is
no more storage space.

H we consider that, for either of the codes under consideration
here, the calculation ¢lx)h; gives the number of mesh points
that need to be added to the ith subinterval in order for the
tolerance to be satisfied there, then condition (1) tells us that,
on our final mesh 7;,, one mesh point at the most wili need to
be added to subinterval H;; in order to resolve the problem to
the requested tolerance. The choice of one here is somewhat
heurtstic and it acts as a relaxation of the tolerance constraints
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for each intermediate problem in the chain of continuation
problems, The reason for relaxing the folerance constraints
is to allow the selection of larger continuation step lengths.

Condition (i) is concerned with ensuring that we do not
form meshes that are “‘far from optimal.”” Let us consider the
situation where a mesh m;, is particularly unsuitable for the
solution of problem g; (for example, a boundary layer may not
be resolved). In this case the effect of the poor resolution of
the boundary layer would be to contaminate the error estimates
not only in the boundary layer but also in the smooth part of
the solution; the overall effect would be that a large mesh 7,
would be predicted. However, on the mesh 77;;, the boundary
layer wouid be more appropriately resoived and thus the error
estimates in the smooth part of the solution less contaminated;
hence we would expect the prediction of a smaller mesh 7,5,
This is a situation we wish to avoid, since numerical solution
on the large mesh 77, is computationally expensive and theoreti-
cally unnecessary.

So how do we select .., in order to satisfy the above
conditions? Let us consider condition (i) first. For a given
continuation probiem, g;, iet us suppose that the monitor func-
tion ¢, ((x) has been formed on a mesh ;. Given the function
¢y (x), both COLMOD and HAGRON select a new mesh, 5,
such that

¢j.1(xi)h; = 1, I1=i= ]VH, (35)
where N;, is the number of mesh points in 7. In particular,
we have

O, Hy= 1. (36)

Now, if
D =D, /2 37

then we have condition (1}). Thus, we aim to ensure that (37)
is satisfied. If we refer back to (32), we can sce

@, = By, + TH,; (38)
thus, in order to satisfy (37) we require
EH_M = —CDJ-‘,IZ. (39)

However, if (39) is not satisfied for a given problem g;, then
we can calculate HM, which is a prediction of the value that
H;; should have taken in order for (39) to be satisfied,

Hj'l = "‘(I)J,I'(ZE) (40)

Thus, when we consider the selection of the new parameter
value &;.(, we will do so with the aim that



272

@, Hyy = O H;, 41
We already know the initial mesh for g,, and if we assume
that the maximum value of the monitor function remains on
the same subinterval as for prablem g;; that is, if we assume

Hj+l.l = H;, 42)
then we can calculate the choice of desired maximum monitor
function value as

D,

fad (DJ{HI]/HVF]] {43)
The assumption that the maximum value of the monitor function
will remain in the same location from one continuation problem
to the next rarely poses a practical restriction for linear prob-
lems. However, if the situation arises that

Hin, # Hyy (44)
then when selecting the value of ®;,,, we would do so in the
foliowing manner:

H; .
Doy = (;_I"B*) * Dy Hiy 1/ s - (45)

41,1

Before discussing the importance of the second condition in
{34}, we note that for each continuation problem g; we expect
the a posteriori error estimate on 7;, to be more accurate than
that on 7;; . Now, since mesh selection is computationally inex-
pensive and since the error estimate on 1, 1s freely available,
we generally form the initdal mesh m;,,, for problem &, by
adapting the mesh #;; in the usual manner.

With regard to the second of the conditions outlined in (34),
our choice of @, is only influenced when this condition fails.
Indeed, our strategy for selecting ¢4, at each step is rather
less straightforward than simply selecting @, , as in (43), and
involves various safeguards in order to ensure that our parame-
ter selection strategy works smoothly. Perhaps, the most im-
portant of these safeguards is implemented when condition (ii)
fails for some problem &,; in this case we insist that for all
future problems

q)erj,deﬂll < fDPJHPJ » _] = ],2, cer - (46)
This restriction is imposed on the basis that the degree of (Jack
of) resolution of the transition layer for problem &, leads to the
construction of a poor error estimate, and hence the failure of
condition (ii). In general, in our algorithm we select ¢, as
in (43) and then impose the following safeguards

if @ Hy = N,
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i1 =
lfq)Hd

min ($;. 4, max G+ N, (N, + 3N/ H;yp9),
j+1,1 < N,}

D10 = max (P4, max &* N (N H )

where N, = @, H;,. These safeguards are experimentally, rather
than theoretically, based and, while it is probable that the factors
% % and 3 could be selected differently without degrading the
performance of our algorithm, we have found them to be reliable
for a large class of problems.

5. TEST PROBLEMS AND NUMFERICAL RESULTS

In this section we test our continuation strategy on four linear
singular perturbation problems, Results for solution with and
without use of continuation are displayed, and these resulis not
only reveal the benefits of continuation but also serve as a
useful guide to the relaiive merits of COLSYS and HAGRON.
For the COLSYS noun-continuation results we use the most
recent verston of COLSYS, called COLNEW [4], while for the
continuation results a modified version of COLNEW, calied
COLMOD {11}, is uiibsed. The codes COLMOD and
HAGRON, which is a modification of TWPBVP.{ appearing
in the ode directory of NETLIB, are available from the third
author on request.

5.1. Test Problems

Onr test set consists of four linear second-order two-point
boundary value problems, and are drawn from the challenging
test set in {9]. The solutions to these problems variously exhibit
boundary layer, intertor layer, comer layer, and smooth types
of behaviour. In our numerical tests the problems are converted
to first-order form.

Problem 1. &" . Exact

solution is

—y=0,30 =1, 1) =

¥(x) = (exp(—x/Ve) —exp((x — 21/Ve)/(1 — exp(—2Ve)).

The solution has a boundary layer of width O(VE)'at x =10

Problem 2. ey" + xy' = —en? cos(mx) — mx sin{mx),
y—1) = =2, y(1) = 0. Exact solution is y(x) = cos(@x} +
erf(x{\/_)/erf( l/\/—) The solution has a shock layer in the
turning point region near x = (.

Problem 3. & + xy' (—1) = 0, y(1) = 2. Exact
solution is y{x) = 1 + erf(xf 2:-: V(1" 2g). The solution has
a turning point of width O(\/a—) atx = Q.

Problem 4. &y’ —y = —(en® + 1) cos{wx). The boundary
conditions are y(—1} = (l) 0. Exact soiution s y(x) =
cos(mx) +exp(x — 1}/Ve) +exp{—(x + 1)/\/.;). The solution
has boundary layers near x = —l and x = 1.
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TABLE I
Problem 1, COLSYS Resulis

COLNEW, no continuation COLMOD, autbmatic continuation
Largest Relative Total Largest Relative Total No, of
& mesh error time mesh error time steps
0.10d-01 80 0.50d-09 0.07 34 0.73d-09 0.09 3
0.104-03 4) 0.77d4-08 0.05 48 0.82d-09 0.14 4
0.104-05 42 0.624-07 .0.07 52 0.81d-09 0.22 6
0.10d-07 140 0.37d-09 027 52 (1.85d-09 0.23 6
(.104-09 320 0.61d-11 0.82 36 0.84d-09 0.26 1
0.10d4-11 1280 0.16d4-08 247 36 0.81¢-09 031 8
0.10d-13 3288 0.13d-12 8.6l 56 0.824-00 0.35 9
0.10d-15 55 (1.92d-Gg (.35 9
TABLE 11
Problem 1, BAGRON Results
HAGRON, no continuation HAGRON, autematic contihuation
Largest Relative Total Largest Relative Total No. of
£ mesh error time mesh error time steps
0.10d-01 24 0.214-09 0.01 17 0.68d-08 0.02 3
0.10d-03 39 0.164-0% 0.02 32 0.214-08 0.03 4
0.10d-05 64 G.18d-10 (.03 33 0.46d-08 G.04 5
0.10d-07 140 0.274-08 0.06 37 0.244-08 0.06 6
0.104-09 167 0.18d-10 0.08 52 0.924-09 0,08 7
0.10d-11 227 (0.21d-16 0.0 52 0.96d4-09 810 8
0.10d-13 gi4 0.59d-12 0.46 52 0,14d-08 Q.11 9
0.10d-15 10387 0.29d-12 5.08 52 0.204-08 .12 10
TABLE 1IN
Problem 2, COLSYS Results
COLNEW, ne continuation COLMOD, automatic continnation
Largest Relative Total Largest Relative Total No. of
2 mesh error time mesh ertor time steps
0.10d-01 30 0.294-08 0.08 &0 0.174-08 0.21 3
0.10dG3 16G 0.12d-08 G.16 ila 0.16d-G8 0.34 4
0.10d-05 92 0.184-00 0.18 124 0.16d-08 0.45 5
0.10d-07 160 0.194-08 0.33 126 0.174-08 055 6
0.104-69 160 0.154-07 0.43 139 0.164-08 0.66 7
0.10d-11 320 0.35d-10 0.74 139 0.23d-08 0.68 7
0.10d-13 640 0.91d-12 1.46 202 (1.19d-08 0.82 8
0.10d-15 640 0.94d-12 1.51 202 0.16d-08 0.95 9
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TABLE IV
Problem 2, HAGRON Results

HAGRON, no continuation

HAGRON, automatic continyation

Largest Relative Total Largest Relative Total No. of
E mesh error time mesh error time steps
0.16d-01 68 (.13d-07 0.02 54 0.224-07 0.04 3
0.104-03 238 0.21a-10 0.13 101 0.794-08 0.1 4
0.10d-05 1720 0.82d-08 0.67 131 0.62d-08 0.16 5
0.104-07 20 0.934-06 0.01° 428 0.68d-10 0.50 7
0.10d-09 1696 0.22d-09 1.08 9580 0.17d-12 5.25 8
0.104-10 5296 0.344-10 3.13
¢ See text.
TABLE V
Problem 3, COLSYS Resulis
COLNEW, no continuation COLMOD, automatic continuation
Largest Relative Total Largest Relative Total No. of
£ mesh error time mesh error time steps
0.104-01 80 0.38d-08 0.07 70 0.144-08 0.17 3
0.10d-03 36 0.24d-07 0.08 82 0.17d-08 025 4
0.10d-05 80 0.26d-03 015 83 0.164-08 0.31 5
0.10d-07 160 0.58d-08 0.34 89 0.16d-08 0.38 6
£.10d-09 160 0.49d-09 0.40 98 0.15d-08 0.45 7
0.10d-11 320 0.22d-10 0.71 104 0.20d-08 0.48 7
0.10d-13 320 .13d-09 (.82 137 0,194-08 0.54 8
0.10d-15 640 0.14d-12 1.66 137 0.17d-08 0.62 9
TABLE V1
Problem 3, HAGRON Results
HAGRON, no continutation HAGRON, automatic continuation
lLargest Relative Total Largest Relative Total No, of
£ mesh error time mesh error time steps
0.10d-01 59 0.62d-09 Q.02 50 0.74d-08 .05 3
0.104-03 27 0.17d-10 0.11 74 .89d-07 0.10 5
0.10d-05 1769 0.14d-08 0.63 117 0.414-07 .14 6
0.104-07 2030 0.37d-10 0.96 117 0.984-09 0.17 7
0.10d-09 1691 0.22d-09 0.97 117 0.70d-07 0.22 9
0.10d-11 117 0.194-08 0.30 i
0.10d-13 117 .49d-07 0.35 13
0.10d-15 17 0.74d-07 041 15
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TABLE Vil
Problem 4, COLSYS Results

COLNEW, no continuation

COLMOD, automatic continuation

Largest Relative Total Largest Relative Total No, of
€ mesh error time mesh error time steps
0.104-01 80 0.424-08 0.09 69 0.284d-08 0.19 3
0.10d-03 160 0.104-07 0.16 15 0.81d-09 0.33 4
0.10d-05 112 0.22d-07 0.18 128 0.42d-08 045 5
0.104-07 284 0.20d-08 0.62 146 0.42d-07 .60 6
0.10d-09 640 0.48d-10 1.79 172 0.82d-07 0.77 7
0.10d-11 2276 0.644-09 5.03 312 0.61d-08 1.05 8
0.10d-13 364 0.62d-08 1.25 9
0.10d-15 388 0.68d-08 1.33 9

5.2. Numerical Results

In our numerical tests each problem is converted to first-
order form. This is a necessary transformation for HAGRON.
However, for COLNEW, the transformation does not take ad-
vantage of the flexibility of collocation methods and, indeed,
COLNEW may well perform better when solving the test prob-
lems directly as second-order equations. Qur motivation for
solving all problems in first-order form lies in the fact that we
believe a comparison of the performance of the two codes
is more readily facilitated when solving problems in this
form.

Both codes were aliotted the same amount of storage space
(500,000 words) which means that a maximum of 3288 mesh
points is allowed in any mesh generated by COLNEW while
the maximum mesh size for HAGRON is 12370. For each
problem we place an error tolerance of 0.1d-07 on the solution.
For COLNEW, the number of collocation points [ is fixed at
4 for each problem. The initia] mesh in both a non-continuation
framework and a continuation framework is specified as a uni-
form mesh of 1 subintervals. The choice of a uniform initial

mesh ignores the fact that an a priori analysis of linear singular
perturbation problems can sometimes lead to knowledge of
the location of the transition layers in the solution. Naturally,
such knowledge would influence the choice of an initial
mesh which, in cases of interest, would not be uniform.
However, in our numerical tests we do not consider an a
priori analysis of the problem, and this is for two reasons.
First, we are interested in developing so-called “‘black box™
methods where no anpalysis of the problem to be solved is
required; instead, the method should efficiently and automati-
cally determine where the transition layers lie. Second, an
a priori analysis may be complicated and time consuming and,
furthermore, may not always elicit information concerning the
location of transition layers. In such sitations we may be
left with no alternative but to select a uniform initial mesh.
However, the codes we discuss do have the option to atlow
a non-uniform initial mesh to be wsed and it will be of
interest to see how such a facility can affect the performance
of the codes in a non-continuation framework. We will
consider the effect of supplying a non-uniform mesh in a
non-continuation framework at the end of this section.

TABLE VIH
Problem 4, HAGRON Results

HAGRON, no continuation

HAGRON, automatic continuation

Largest Relative Total Largest Refative Total No. of

> mesh error time mesh error time steps
0.10d-01 62 0.21d-08 0.03 46 Q.13d-07 .06 3
0.10d-03 161 0.19d-07 0.09 98 0.524-06 0.11 4
0.10d-D5 500 0.604-08 0.19 124 0.32d-06 0.17 3
0.16d-07 1382 0.12d-08§ 0.51 150 0.10d-06 0.30 6
0.10d4-0% 1222 0.48d-09 0.57 200 0.12d-07 038 7
0.10d-11 1375 0.614-09 0.93 263 0.294-08 047 8
0.10d-13 5855 0.14d-09 4.37 263 G.12d-09 .51 8
0.10d-15 368 0,37d.07 0.69 9
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TABLE IX
Problem 5, COLNEW Errors on Shishkin Meshes

€ N=10 N=20 N=40 N=80 N=160 N=320

0.10d-00
0.10d-N
,10d-02
0.100-03
(-10d-04
0.10d-03
(3.10d-06
0.10d-07
0.10d-08

0.78d-05
0.13d-02
(.64d-02
0.124-01
(.13d-01
0.134-01
0.13d-01
0.134-01
0.13d-01

0.44d-06
0.104-03
0.16d-02
0.24d-02
0.31d-02
0.324-02
0.324-02
0.32d-02
0.32d-02

0.15d-07
0.35d-05
0.28d-03
0.45d-03
0.71d-03
0.80d-03
0.81d-03
(.81d-03
0.814-03

0.50d-09
0.64d-07
0.314-04
0.134d-03
(.13d-03
0.19d-03
(.20d-03
0.204-03
(.20d-03

0.164-10
0.75d-09
0.27d-05
0.28d-04
0.35d-04
0.42d-04
0.49d-04
0.50d-04
0.50d-04

0.51d-12
0.33d-10
0.13d-06
0.51d-05
0.92d-05
0.63d-03
0.12d-04
0.124-04
0.13d-04

Since we know the exact solution for each of the test prob-
lems it is possible to calculate the maximum relative error

for each problem. Thus, given a set of points, 1, X3, ..., X,
we find
Relative E (ivl(xi) - “\(If)i) a8
t = ]
elative Error rg?i( max(l, !v,(xj)]) (48)

The aim of the code HAGRON is to construct a discrete solution
which satisfies the user-supplied error tolerances at the mesh
points. Thus, for HAGRON, the relative error (48) is calculated
using the set of mesh points in the final mesh for each problem.
The aim of the code COLNEW is to form a continuous solution
which satisfies the user-supplied error tolerances on the whaole
interval [a, b]. Therefore, for COLNEW, the relative error (48)
1s calculated using the set of mesh points in the final mesh for
each problem, plus (arbitrarily) three equally spaced points in
each mesh subinterval in the final mesh. In this manner, we
are testing the degree of success of each code in fulfilling
their objectives. The fact that HAGRON does not provide a
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continuous solution is an obvious disadvantage when compared
with COLNEW.

In Tables I-VII the column “‘largest mesh™ denotes the
largest mesh used when solving for a particular value of &.
This value provides an indication of the amount of storage space
needed when solving a particular problem. All calculations in
the numerical tests are performed in double precision on an
1IBM RS6000.

The behaviour of HAGRON in a non-continuation frame-
work in the above tables warrants some explanation. In general,
one would expect that as e becomes smaller the code would have
increasing difficulty in solving a particular singular perturbation
problem. However, our numerical resulis reveal that this is not
always the case in practice. For example, if we consider Table
IV, the non-continuation times initially increase as & hecomes
smaller; however, HAGRON then appears to solve the problem
with ¢ = 0.10d-07 extremely quickly. This behaviour is ex-
plained by the fact that the transition layers for this problem
have not been resolved; that is, the solution has only been
resolved in smooth regions. This is because HAGRON attempts
to satisfy an error estimate only at mesh points. It is sometimes
possible for this error estimate to be satisfied even when no
mesh points are in the region of rapid variation. In such cases
the code never “‘sees™ the non-smooth part of the solution.
This difficulty should not occur i continuation is used.

As discussed previously, the choice of a uniform initial mesh
in a non-continuation framework is not always necessary since
an a priori analysis of certain singular perturbation problems
leads to information about the Jocation of transition layers in
the solution. We consider a singular perturbation problem for
which this is the case.

Problem 5. ey’ — v =0, (0} = |, (1) = Q.
Exact solution is y(x) = (1 — exp((x — 1)/£))}/(1 — exp(—1/&)}.
The solotion has a boundary iayer of width O(g) at x = 1.

This problem is one of a class of singuiar perturbation prob-

TABLE X
Problem 5, COLSYS Results

COLNEW, no continuation

Largest Relative Total
& raesh error time
0.104-00 40 0.56d-09 0.04
0.104-01 40 0.814-07 0.05
0.10d4-02 40 (1.46d-06 n.06
0.104-03 24 ¢.11d-97 0.18
0.104-04 320 0.14d-10 0.74
0.104-05 1082 O.13d-10 2.00
0.10d-06 2560 0.38d-11 6.01
pid0r
0.106d4-08

COLMOD, automatic continuation

Largest Rejative Total No. of
mesh errar time steps
36 0.73d-09 0.04 1
48 0.82d4-09 0.09 2
32 0.82d-09 0.13 3
5¢ 0.744-09 0.17 4
54 0.68d-09 022 5
56 0.104-08 0.22 5
56 0.82d-09 0.27 6
36 0.83d-09 0.34 7
56 0.16d-08 0.30 7
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TABLE X}

Problem 5, No Continuation, Shishkin Initial Mesh

COLNEW, N =10

Largest Relative
£ mesh error

0.10d-00 28 0.26d-08
0.104-01 40 0.994-07
0.104-02 40 045d-06
0.10d-03 126 0.974-10
0.10d-04 320 0.794-08
0.104-05 1090 0.4384-13
0.10d-06 160 (.46d-09
0.10d-07 1134 0.24d-13

COLNEW, N = 80

Total Largest Relative Total
time mesh erroy time
0.05 80 0.11d-10 Q.10
0.07 80 0,714-08 0.07
0.10 30 0,384-07 0.08
G.24 104 (.33d-08 ¢.21
0.73 244 4.17d-09 0.49
2.53 626 0.52d-13 1.76
(A48 1472 (.74d-14 4.21
3.16 752 0.194-12 1.69

lems which has been extensively examined in the literature.
In particular, Shishkin {10} has proposed a special piecewise
equidistant mesh for the solution of such problems, Given an
even number of subintervals &, a Shishkin mesh (for Problem
3} is formed by dividing the interval {0, 1] into two subintervals
0,1—a, [l-all

Equidistant meshes with N/2 points are then formed on each
subinterval. The parameter o is proportional to & and depends
on the size of N and the coefficient functions appearing in the
differential equation and for Problem 5 is given by o = 2 In
N. We consider the solution of Probiem 5 by COLNEW on
Shishkin meshes for various N in Table 1X. The results in Table
IX reveal that the Shishkin meshes lead to an error of O(N9)
in the COLNEW solution. Furthermore, for sufficientty small
g, it can be seen that the errors 1n the solution on the Shishkin
meshes are uniform in .

In order to gauge the benefits of supplying a Shishkin mesh
as an initial mesh in a non-continuation framework we will
first consider the solution of Problem 5 by the COLSYS codes

in both a non-continuation framework and a continuation frame-
work with a uniform initial mesh of 10 subintervals.

We then consider the solution of Problem 5 by COLNEW
in a non-continuation framework, but now with a Shishkin
initial mesh. Resulis are given in Table XI.

With reference to Tables X and X1, it appears that there is
no significant advantage in supplying a Shishkin mesh rather
than a uniform mesh as the initial mesh for the COLNEW
experiments. However, this observation should be tempered
by the following two facts. First we note that in {11} 1t was
demonstrated that the COLSYS error estimate may become
highly inaccurate if neighbouring subinterval sizes differ by
many orders of magnitude—this is exactly the situation with
a Shishkin mesh. Second, any general purpose code inevitably
contains some heuristic factors and, for example, the choice
between a mesh selection and a mesh halving at some stage in
the solution process may crucially affect the overall results.
This is particularly so for very small & and explains the rather
non-uniform behaviour of COLNEW in Table XI.

As a conclusion to this section we specify the e-sequence
and mesh sequence generated by COLMOD and HAGRON in

TABLE XI1
Problem 4, g; = 0.100d-15, COLMOD Results

J & O H, @ H @J,-,,HN § i, PifPiz Mesh sequence
1 0.1004-00 458 — — 1.01 0.95 10, 40
2 0.1314-01 318 8.43 18238 LR 1.02 42, 65
3 0.190a-02 2.69 535 18.41 1.07 1.G0 64, 92
4 0.604d-04 5.69 5.69 20.36 115 1.03 92, 117
5 0.839d-06 £.68 8.69 21.61 1.23 .02 114, 132
& 0.515d-08 12.98 13.02 22.89 1.35 1.04 129, 149
-7 0.1424-10 19.39 19,47 2479 1.54 1.08 141, 156
8 0.193d-13 27.55 27.71 2711 .77 1.11 146, 180
9 0.100d-15 14.33 14.19 31.58 1.39 1.13 158, 176, 97, 154, 388
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TABLE XHI
Problem 4, & = 0.100d-15, HAGRON Results

i g &, H, O, H; dJ,-#HN @,/ PlP, Mesh sequence
1 0.100d4-00 1.84 — — 0.86 1.17 10, 26

2 0.1338-01 1.63 4,84 — 0.79 110 26, 46

3 0.111d-02 1.93 4.84 — 0.80 1.09 46, 76

4 (.195d-04 315 4.93 — 0,81 1.06 76, 108

5 .162d-06 8.33 8.15 _ 0,88 1.11 108, 142

6 0.725d-09 [2.88 1249 —_ 1.00 1.26 142, 200

7 {.1924-11 19.84 19.32 718.54 1.22 1.44 176, 263

8 0.296d-14 3091 29,76 53.31 1.60 .77 202, 368

9 0.100d-15 8.74 27.91 41.09 0.87 - 1.09 230, 234

a continuation framework for a specific problem. The problem
we consider is Problem 4 with g; = 0,10d-13, In Tables X1l and
XIH the symbol &, denotes the value of the desired maximum
monitor function value given by (43) before the safeguards
(47) have been implemented. '

6. CONCLUSIONS AND FUTURE WORK

The overall aim in developing our continuation strategy was
to solve extremely difficult singular perturbation problems more
efficiently than when solving without continuation. In particu-
lar, we had three main aims:

* Solve more problems.
* Use less storage space when solving problems.
* Solve problems faster.

If we consider the results for the four problems presented in
this paper it is possible to see how successful we have been in
our aims.

With regard to the first of the above aims, the smallest value
of & that we were able to solve each problem for without use
of continuation was usuaily surpassed {or ai least equalled) by
the smallest vajue of & when using continuation. The only

exception is for Problem 2 when using HAGRON {(the advan-
tage of using continuation for this problem is still demonstrated
by the fact that without using continuation the problem &
0.1d-07 is not resolved correctly by HAGRON).

Our results reveal that for most of the problems the difference
between the largest mesh used In solving without continuation
and that used when solving with continuation generally be-
comes larger as & becomes smaller. In the most extreme cases,
such as with Problem I, we see that for COLNEW approxi-
mately 60 times more storage space is required in solving for
e = (.1d-15 without continuation than with continuation.

It is observed that the advantages of using continnation in
terms of speed of solution generally increase as £ becomes
smaller. For relatively large values of & there is usually no
advantage in using continuation,

The results for the four problems highlighted in this paper
are representative of the results we have obtained generally. We
have tested our continuation algorithm on the fificen problems
tound in 3] and found only one problem (Problem 7 in [5])
which was generally solved faster without using continuation
than with continuation.

It is our intention to expand our continuation strategy to
include a mesh prediction strategy. At the moment we have a

TABLE XIV
Problem 6, COLSYS Results

COLNEW, no continuation

Largest Relative Total
e mesh error time
0.10d-00 26 0.91d-08 0.18
0.10d-0t o
(.10d-02
(.10d4-03
0.10d-04

0.10d-05

COLMOD, automatic continuation

Largest Relative Fotal No, of
mesh error time steps
34 0.10d-08 0.28 3
41 0.684-09 0.38 4
41 0.78d-09 0.56 5
42 0.12d-08 .62 6
42 0.15¢-07 0.76 6
48 Q.11d-06 L75 8




CONTINUATION FOR SINGULAR PERTURBATION

279

TABLE XV
Problem 7, COLSYS Results

COLNEW, no continuation

Total
time

Relative
error

Largest
3 mesh

0,10d-0% 80
0.10d-03 40
0.10d-05
0.10d-07
0.104-09
g.104-1t
0.10d-13
0.10d-15

0.16d-08
0.764-08

0.03
0.13

COLMOD, automatic continuation

Largest Relative Total No. of
mesh error fime steps
34 0.724-09 0.3% 4
48 0.744-09 (.53 5
52 0.82d-09 0.7¢ 6
52 0.82d-09 0.94 7
34 0.834-09 1.10 8
56 0.76d-G9 1.20 8
58 0.824-09 1.40 9
59 0.764-0% 1.63 10

so-called staric rezoning regime, which means that the best
mesh for problem g; is used as the initial mesh for problem
&1 An alternative approach would be to predict an appropriate
mesh for £, and then use this as the initial mesh for £,,,.

We also intend to apply our strategy to nonlinear problems
where, naturally, there is the added consideration of conver-
gence of Newton’s method when selecting the continuation
parameter. Qur strategy as it stands does not preclude the solu-
tion of non-linear problems; indeed, early investigations on
non-linear probiems have yielded extremely encouraging re-
sults. For example, consider the following two non-linear
problems.

Problem 6. This problem is given in Hemker 19]. &y" +
'Y = 1,y0) =1 + glncosh(—0.745/), y(H = | + ¢ n
cosh{0.255/¢).

Exact solution is yv(x) = | + & In cosh{(x — 0.745)/g).
As e — 0, 9(x) — 1 + |x — 0.745|, the solution has a corner
layer at x = 0.745,

Problem 7. ey — y — y* = —exp(—2/Ve), y(0) = 1,
y(1) = exp(~1/Ve),
Exact solution is y(x) = exp( —xl\/g).
The solution has a boundary layer of width O(\/::) near x = 0.

We present the results for the COLSYS codes for these
problems. The continuation sirategy remains exactly the same
as for lipear probiems. The initial guess for the solution of
problem &;,, is provided by the final solution of problem &,

These results are typical of the nonlinear problems we have
tried and demonstrate the importance of the availability of a

good initial guess for difficult nonlinear singular perturbation
problems. It is our intention to develop our continuation strategy
further to include convergence of Newton's method as a crite-
rion for parameter selection.
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